\(\int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx\) [428]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 284 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 (A b-a B) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a^2 \sqrt {a+b} d}+\frac {2 (A+B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}-\frac {2 (A b-a B) \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \]

[Out]

-2*(A*b-B*a)*sin(d*x+c)/(a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2)+2*(A*b-B*a)*cot(d*x+c)*EllipticE((
a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+
sec(d*x+c))/(a-b))^(1/2)/a^2/d/(a+b)^(1/2)+2*(A+B)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos
(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/(a+b)^(1
/2)

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 284, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {3072, 3077, 2895, 3073} \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 (A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d \sqrt {a+b}}-\frac {2 (A b-a B) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {2 (A+B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d \sqrt {a+b}} \]

[In]

Int[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^(3/2)),x]

[Out]

(2*(A*b - a*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a
+ b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*Sqrt[a + b]*d)
+ (2*(A + B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a +
b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*Sqrt[a + b]*d) - (2
*(A*b - a*B)*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3072

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d
*Sin[e + f*x]])), x] + Dist[d/(a^2 - b^2), Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x]
]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (A b-a B) \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\int \frac {A b-a B+(a A-b B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{a^2-b^2} \\ & = -\frac {2 (A b-a B) \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {(A+B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{a+b}+\frac {(A b-a B) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{a^2-b^2} \\ & = \frac {2 (A b-a B) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a^2 \sqrt {a+b} d}+\frac {2 (A+B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}-\frac {2 (A b-a B) \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.67 (sec) , antiderivative size = 1223, normalized size of antiderivative = 4.31 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \sqrt {\cos (c+d x)} \left (-A b^2 \sin (c+d x)+a b B \sin (c+d x)\right )}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {-\frac {4 a \left (a^2 A-A b^2\right ) \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-4 a \left (-a A b+a^2 B\right ) \left (\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )+2 \left (-A b^2+a b B\right ) \left (\frac {i \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {a+b \cos (c+d x)} E\left (i \text {arcsinh}\left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )|-\frac {2 a}{-a-b}\right ) \sec (c+d x)}{b \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {\frac {(a+b \cos (c+d x)) \sec (c+d x)}{a+b}}}+\frac {2 a \left (\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )}{b}+\frac {\sqrt {a+b \cos (c+d x)} \sin (c+d x)}{b \sqrt {\cos (c+d x)}}\right )}{a (a-b) (a+b) d} \]

[In]

Integrate[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^(3/2)),x]

[Out]

(-2*Sqrt[Cos[c + d*x]]*(-(A*b^2*Sin[c + d*x]) + a*b*B*Sin[c + d*x]))/(a*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]
) + ((-4*a*(a^2*A - A*b^2)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d
*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos
[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*S
qrt[a + b*Cos[c + d*x]]) - 4*a*(-(a*A*b) + a^2*B)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b
)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*Elliptic
F[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a
+ b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a +
b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*Ellipti
cPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/
2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(-(A*b^2) + a*b*B)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*
Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt
[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*
Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*
Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]
], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a +
b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x
])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2
)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])))/b + (Sqr
t[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*Sqrt[Cos[c + d*x]])))/(a*(a - b)*(a + b)*d)

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1532\) vs. \(2(264)=528\).

Time = 13.70 (sec) , antiderivative size = 1533, normalized size of antiderivative = 5.40

method result size
default \(\text {Expression too large to display}\) \(1533\)
parts \(\text {Expression too large to display}\) \(1537\)

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(2*A*(-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*
x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2-(-csc(d*x+c)^2*(1-cos(d*x+
c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(c
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-co
s(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(
1/2))*a*b+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x
+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2+csc(d*x+c)^3*a*b*(1-cos(d*x
+c))^3-csc(d*x+c)^3*b^2*(1-cos(d*x+c))^3-a*b*(csc(d*x+c)-cot(d*x+c))+b^2*(csc(d*x+c)-cot(d*x+c)))*((csc(d*x+c)
^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)/(a+b)/(a-b
)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/a/(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/
(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)+2*B*(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c)^2*(1-cos(d*x+c))^
2+1))^(1/2)*(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^
2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)*(-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1
-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b)
)^(1/2))*a-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*
x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b+(-csc(d*x+c)^2*(1-cos(d*x+c)
)^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot
(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*
x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2)
)*b+csc(d*x+c)^3*(1-cos(d*x+c))^3*a-csc(d*x+c)^3*(1-cos(d*x+c))^3*b-a*(csc(d*x+c)-cot(d*x+c))+b*(csc(d*x+c)-co
t(d*x+c)))/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+
a+b)/(a-b)/(a+b))

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b^2*cos(d*x + c)^3 + 2*a*b*cos(d*x
+ c)^2 + a^2*cos(d*x + c)), x)

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))/((a + b*cos(c + d*x))**(3/2)*sqrt(cos(c + d*x))), x)

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^(3/2)),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^(3/2)), x)